NPP Thermal Performance Monitoring and Optimization System

VVER 2019 Recent & Future

11 – 12 November 2019, Prague, Czech Republic

CONTENT

- Thermal Monitoring & Optimization System challenges
- Thermal Monitoring & Optimization System (O&M) three pillars
- Advanced measured data processing (DVR)
- Models for diagnostics and optimization
- Diagnostics Examples condenser, cooling tower
- Optimization example cooling circuit optimization
- Conclusion, benefits

MY VIEW = WHAT IS POWER PLANT PERFORMANCE IMPROVEMENTS

WHEN WE ARE TALKING ABOUT POWER PLANT PERFORMANCE = WE ARE TALKING ABOUT THERMAL POWER PLANT PERFORMANCE

THERMAL POWER PLANT PERFORMANCE RESTORING OR INCREASING = POWER PLANT OUTPUT TO THE GRID INCREASING

POSSIBILITIES / CHALLENGES

- Reactor power output increasing by improving accuracy of reactor thermal output calculation; data reconciliation
- Early warning of critical equipment performance degradation; turbine, condenser, cooling tower, etc.; equipment model = expected state for given condition
- Loss MW finding; cycle isolation
- Improvements of main control loops; cooling water flow optimization

THE PRESENTATION IS NOT ONLY ABOUT GENERAL IDEAS BUT ALSO ABOUT REAL EXAMPLES TAKEN FROM REAL LIFE (, AND TO SHOW THAT IT IS POSSIBLE)

THERMAL MONITORING & OPTIMIZATION SYSTEM – CHALLENGES

TRUE ANSWER TO THREE QUESTIONS

- Do we have really true information about equipment health and overall thermal cycle performance?
- Do we know current equipment health?
- Do we provide loss megawatt hunting and / or find out all possibilities to improve performance of thermal cycle?

THERMAL MONITORING & OPTIMIZATION SYSTEM – CHALLENGES (1)

Nuclear reactor

- Accuracy in terms of output < 0,5 %
- Reactor thermal output uprate ↑ 0,1 0,2 %

• Accuracy in terms of output < 3,0 %

E

THERMAL MONITORING & OPTIMIZATION SYSTEM – CHALLENGES (2)

Ø

THERMAL MONITORING & OPTIMIZATION SYSTEM – CHALLENGES (3)

M&O – BENEFITS BY ADVANCED DATA PROCESSING AND MODELS

ADVANCED MEASURED DATA PROCESSING, ADDITIONAL LEVEL FOR DATA VALIDATION

ACCURACY EXAMPLE – REACTOR POWER OUTPUT ON-LINE CALCULATION

MODELS FOR DIAGNOSTICS AND OPTIMIZATION

E

IDENTIFYING THE ORIGIN OF PERFORMANCE DEVIATION BY KPI

Ø

SURFACE CONDENSER MODEL

Ø

ACCURACY EXAMPLE – SURFACE CONDENSER MODEL

Ø

Energo

www.ic-energo.eu

SURFACE CONDENSER – AIR LEAKAGE DETECTION EXAMPLE

• Air intake is occurring due to interconnection of both units

Ø

SURFACE CONDENSER – SURFACE FOULING DETECTION EXAMPLE

Ø

Energo

www.ic-energo.eu

COOLING TOWER MODEL

Ø

COOLING TOWER – DETECTION OF FILL FOULING EXAMPLE

Clear view is affected by

- Cooling circuit dynamics (water accumulation in basin)
- Measurement of wet bulb temperature (1 km far away from tower
- Wind speed, wind direction

WHAT WE CAN SEE

A

Energo

- Decreasing cooling tower performance 1 °C (approach 个)
- = 3 MW loss /1000 MW turbine
- Input for predictive maintenance

Cause of performance decreasing

• Fill (bio)degradation

STEAM TURBINE COLD END OPTIMIZATION EXAMPLE

Overall Unit Performance Depends on Performance of the Main Equipment and their Mutual Relationship

e

Overall Unit Performance Depends on Performance of the Main Equipment and their Mutual Relationship

e

STEAM TURBINE COLD END OPTIMIZATION

STEAM TURBINE COLD END OPTIMIZATION RESULT

e

CONCLUSION – BENEFITS

BETTER CONFIDENCE IN DATA

- Gross errors of measurement Detection, identification, and elimination
- Data truthfulness enhancement (= precision + accuracy)

DEEP VIEW INSIDE THE THERMAL PROCESS; transformation data into usefulness information

- Unmeasured quantities calculation
- KPI (=Key performance indicators) calculation
- Knowledge of power plant staff enhancement

BETTER SUPERVISION & DIAGNOSTICS

- On-line equipment and processes health assessment
- Early warning of equipment failures
- Lost megawatts finding
- Inputs for predictive maintenance

THERMAL PROCESS OPTIMIZATION & PREDICTION

- Unit power output increasing
- Accurate unit power output planning

Equipment	Detection Starting	Reliable Detection	Output Loss
Condenser	个 0,1 kPa	个 0,2 kPa	个 0,5 kPa -> 5 MW loss /1000 MW turbine
Turbine	个 1,0 MW	个 2,0 MW	= loss detection
Cooling Tower	个 0,2 °C	个 0,4 °C	↑ 1,0 °C -> 3 MW loss /1000 MW turbine

Thank you for your attention Ing. Jiri Pliska T +420 602 723 934 E jpliska@ic-energo.eu LinkedIn www.linkedin.com/in/jiri-pliska adresa: Prazska 684/49, 674 00 Trebic, Czech Republic